# Mitochondrial Diseases: Current Treatment Strategies

**Dr Robert Pitceathly** 

UCL MRC Centre for Neuromuscular Diseases, London The Lily Foundation Family Weekend 2017



| Brain. 2016 Jun; 139(             | 6): 1633–1648.                                                                                                                                     |                                                | Examples                                                                                                                              | Challenges                                                                                                                                                                                                                                                                               |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | Mitochondrially-targeted nucleases                                                                                                                 | Restriction endonuclease                       | Zinc Finger Nucleases<br>Transcription Activator Like Effector Nucleases                                                              | Lack of mutation-derived restriction sites for restriction<br>endonucleasses to target<br>Specificity of restriction endonuclease targeting<br>Efficiency of targeting recombinant proteins into cells and<br>mitochondria                                                               |
| Maninulating DNA                  | Manipulating mtDNA with peptide nucleic acids                                                                                                      | Peptide nucleig acid                           |                                                                                                                                       | Solubility<br>Efficiency of delivery                                                                                                                                                                                                                                                     |
|                                   | Manipulating tRNA enzymes                                                                                                                          | RIbosome<br>Vertilas<br>e enzyme<br>komme trad | Human non-cognate mitochondrial leucyl<br>tRNA synthetase<br>Carboxy-terminal domain of human<br>mitochondrial leucyl tRNA synthetase | Cross reactivity<br>Efficiency of delivery<br>Adeno-associated viruses cannot carry constructs > 5kb                                                                                                                                                                                     |
|                                   | Gene transfer using adeno-associated<br>viral vectors                                                                                              |                                                | AAV-ETHE1 (nuclear gene)<br>AAV-ND4 (mitochondrial gene)                                                                              | Misexpression of the imported gene<br>Efficient delivery to desired cell population<br>Obtaining adequate titres                                                                                                                                                                         |
|                                   | Systemic protein delivery                                                                                                                          | Protein<br>Erythrocyte encapsulated protein    | Transfusion of platelets or erythrocyte encapsulated thymidine phosphorylase                                                          | Sustaining thymidine phosphorylase levels                                                                                                                                                                                                                                                |
| New protein delivery              | Cellular and mitochondrial protein<br>delivery                                                                                                     | Mitochondrially targeted protein               | Mitochondrially targeted transcription factor A                                                                                       | Over expression is reported to increase mtDNA copy number, mtDNA deletions and respiratory deficiency                                                                                                                                                                                    |
| Small molecule<br>pharmaceuticals | Manipulating mitochondrial and<br>nuclear DNA                                                                                                      | Enhancement of<br>Mitochondrial biogenesis     | Bezafibrate<br>AICAR<br>Resveratrol<br>PAPR inhibitors<br>Rapamycin<br>Cyclosporin A                                                  | Hepatomegaly and abnormal lipid metabolism in animal models<br>Potential hepatic side effects<br>Mild gastrointestinal side effects<br>Mild side effects including fatigue, nausea vomiting and anemia<br>Hyperlipidaemia, poor wound healing and immunosuppression<br>Immunosuppression |
| Stem cell approaches              | Exogenous stem cell therapy for<br>nuclear gene mutations<br>A source of thymidine phorphorylase<br>Endogenous stem cells shifting<br>heteroplasmy |                                                | Bone marrow and stem cell transplantation<br>Bupivicaine injections<br>Exercise                                                       | Availability of stem cell transplants<br>Sustaining effect<br>Side effects of myeloablative protocol<br>Finite capacity of repair<br>Limited to patients with isolated mitochondrial myopathies                                                                                          |

#### ClinicalTrials.gov, September 2017

#### Interventional Studies | Mitochondrial Disease | Phase 2: 15 active studies

| Study Title                                                                                                                                                                                                                                             | Conditions                                                                                                    | Interventions                                                                                                                                                                                                                                                                                                                                                          | Study Type     | Phase                | Number<br>Enrolled |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|--------------------|
| Mitochondria and Chronic Kidney Disease                                                                                                                                                                                                                 | Hemodialysis-Induced Symptom; Mitochondrial Diseases                                                          | Drug: Icalibant, Drug: Placebo                                                                                                                                                                                                                                                                                                                                         | Interventional | Phase 2              | 11                 |
| Safety and Efficacy Study of Gene Therapy for The Treatment of Leber's<br>Hereditary Optic Neuropathy                                                                                                                                                   | Leber Hereditary Optic Neuropathy                                                                             | Drug: rAAV2-ND4; Drug: normal saline                                                                                                                                                                                                                                                                                                                                   | Interventional | Phase 2 /<br>Phase 3 | 48                 |
| Open-Label Extension Trial to Characterize the Long-term Safety and<br>Tolerability of Elamipretide in Subjects With Genetically Confirmed Primary<br>Mitochondrial Disease (PMD)                                                                       | Primary Mitochondrial Disease                                                                                 | Drug: elamipretide                                                                                                                                                                                                                                                                                                                                                     | Interventional | Phase 2              | 36                 |
| The KHENERGY Study                                                                                                                                                                                                                                      | Mitochondrial Diseases; Mitochondrial Myopathies;<br>Mitochondrial Encephalomyopathies; MELAS; MIDD           | Drug: KH176; Drug: placebo                                                                                                                                                                                                                                                                                                                                             | Interventional | Phase 2              | 20                 |
| A Study to Evaluate the Safety, Tolerability, and Efficacy of Subcutaneous<br>Injections of Elamipretide (MTP-131) in Subjects With Genetically Confirmed<br>Mitochondrial Disease Previously Treated in the Stealth BioTherapeutics<br>SPIMM-201 Study | Primary Mitochondrial Disease                                                                                 | Drug: Elamipretide; Drug: Placebo                                                                                                                                                                                                                                                                                                                                      | Interventional | Phase 2              | 30                 |
| A Study Investigating the Safety, Tolerability, and Efficacy of Elamipretide<br>(MTP-131) Topical Ophthalmic Solution for the Treatment of Leber's<br>Hereditary Optic Neuropathy                                                                       | Leber's Hereditary Optic Neuropathy                                                                           | Drug: elamipretide (MTP-131) 1% topical ophthalmic solution; Drug: Vehicle topical ophthalmic solution                                                                                                                                                                                                                                                                 | Interventional | Phase 2              | 12                 |
| (+) Epicatechin to Treat Friedreich's Ataxia                                                                                                                                                                                                            | Friedreich's Ataxia                                                                                           | Drug: (+)-Epicatechin                                                                                                                                                                                                                                                                                                                                                  | Interventional | Phase 2              | 10                 |
| A Study of Bezafibrate in Mitochondrial Myopathy                                                                                                                                                                                                        | Mitochondrial Diseases                                                                                        | Drug: Bezafibrate                                                                                                                                                                                                                                                                                                                                                      | Interventional | Phase 2              | 10                 |
| Long-Term Safety and Efficacy Evaluation of EPI-743 in Children With Leigh<br>Syndrome                                                                                                                                                                  | Leigh Syndrome                                                                                                | Drug: EPI-743                                                                                                                                                                                                                                                                                                                                                          | Interventional | Phase 2              | 31                 |
| RTA 408 Capsules in Patients With Friedreich's Ataxia - MOXIe                                                                                                                                                                                           | Friedreich Ataxia                                                                                             | Drug: Omaveloxolone Capsules, 2.5 mg; Drug: Omaveloxolone Capsules, 5 mg; Drug: Omaveloxolone Capsules, 10 mg;<br>Drug: Placebo; Drug: Omaveloxolone Capsules, 20 mg; Drug: Omaveloxolone Capsules, 40 mg;<br>Drug: Omaveloxolone Capsules, 80 mg; Drug: Omaveloxolone Capsules, 160 mg; Drug: Omaveloxolone Capsules, 300 mg;<br>Drug: Omaveloxolone Capsules, 150 mg | Interventional | Phase 2              | 172                |
| RTA 408 Capsules in Patients With Mitochondrial Myopathy - MOTOR                                                                                                                                                                                        | Mitochondrial Myopathies                                                                                      | Drug: Omaveloxolone capsules, 2.5 mg; Drug: omaveloxolone capsules, 5 mg; Drug: omaveloxolone capsules, 10 mg;<br>Drug: Placebo capsules; Drug: omaveloxolone capsules, 20 mg; Drug: omaveloxolone capsules, TBD mg;<br>Drug: omaveloxolone capsules, 40 mg; Drug: omaveloxolone capsules, 80 mg; Drug: omaveloxolone capsules, 160 mg                                 | Interventional | Phase 2              | 100                |
| Safety Evaluation of Gene Therapy in Leber Hereditary Optic Neuropathy (LHON) Patients                                                                                                                                                                  | Leber Hereditary Optic Neuropathy                                                                             | Genetic: GS010                                                                                                                                                                                                                                                                                                                                                         | Interventional | Phase 1 /<br>Phase 2 | 21                 |
| EPI-743 for Metabolism or Mitochondrial Disorders                                                                                                                                                                                                       | Undiagnosed Diseases; Metabolic Disease; Neurology;<br>Myoptahy; Oxidation/Reduction; Mitochondrial Disorders | Drug: EPI-743                                                                                                                                                                                                                                                                                                                                                          | Interventional | Phase 2              | 20                 |
| Effect of Nicotinamide in Friedreich's Ataxia                                                                                                                                                                                                           | Neurodegenerative Disorders                                                                                   | Drug: nicotinamide                                                                                                                                                                                                                                                                                                                                                     | Interventional | Phase 2              | 40                 |
| EPI-743 for Mitochondrial Respiratory Chain Diseases                                                                                                                                                                                                    | Mitochondrial Diseases                                                                                        | Drug: EPI-743                                                                                                                                                                                                                                                                                                                                                          | Interventional | Phase 2              | 87                 |

## What about now!

## What is a treatment?

### Anything that improves quality of life

## Overview

- Pharmacological agents, vitamins and related substances
  - Underlying disease versus symptoms
  - Specific treatable clinical syndromes
- Exercise and dietary modification
- Health surveillance and monitoring
- Emergency plans and acute management

# Pharmacological agents, vitamins and related substances

#### Vitamins, cofactors and food supplements



### Pharmacological agents and vitamins

Cochrane Database of Systematic Reviews

#### Treatment for mitochondrial disorders (2012)

- 1335 abstracts (1966-2012)
- 12 trials well designed:
  - Coenzyme Q10
  - Creatine
  - Creatine/Q10/lipoic acid combo
  - Dichloroacetate
  - Dimethylglycine
  - Cysteine
- No evidence supporting use of any intervention in mitochondrial disorders

# Randomised, double-blinded, placebo-controlled clinical trials in mitochondrial disease

| Treatment                                                                  | Disease                                         | No. of<br>participants | Type of trial                                                       | Outcome                                                                                                                                           | References                      |
|----------------------------------------------------------------------------|-------------------------------------------------|------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| CoQ <sub>10</sub>                                                          | MELAS, PEO, complex I<br>deficiency, NARP, LHON | 30                     | Randomized, placebo-controlled,<br>double-blind crossover           | Serum CoQ <sub>10</sub> increased, lactate levels<br>decreased after 1 min of cycle<br>ergometry, but no significant change<br>in other endpoints | Glover et al., 2010             |
| Creatine                                                                   | MELAS and MM                                    | 7                      | Randomized, placebo-controlled,<br>double-blind crossover           | Increased handgrip strength, NIDT and<br>post-exercise lactate                                                                                    | Tarnopolsky et al., 1997        |
|                                                                            | CPEO and MM                                     | 16                     | Randomized, placebo-controlled,<br>double-blind crossover           | No effect                                                                                                                                         | Klopstock et al., 2000          |
|                                                                            | CPEO and KSS                                    | 15                     | Randomised, placebo-controlled<br>crossover                         | No effect                                                                                                                                         | Kornblum et al., 2005           |
| DCA                                                                        | MM, CPEO, KSS, Leigh<br>syndrome, MELAS         | 11                     | Randomised, placebo-controlled,<br>double-blind crossover           | Decreased blood lactate, pyruvate and<br>alanine at rest and post-exercise,<br>some improvements in brain MRS                                     | De Stefano <i>et al.</i> , 1995 |
|                                                                            | CPEO, MERRF, MM                                 | 8                      | Randomized, placebo-controlled,<br>double-blind crossover           | Decreased resting and exercise lactate<br>and pyruvate                                                                                            | Vissing et al., 2001            |
|                                                                            | Mitochondrial RC<br>disorders                   | 9                      | Randomized, placebo-controlled,<br>double-blind crossover           | Decreased blood lactate levels during<br>exercise                                                                                                 | Duncan et al., 2004             |
|                                                                            | MELAS m.3243A>G                                 | 30                     | Randomized, placebo-controlled<br>crossover                         | No effect. Study terminated due to side<br>effects (peripheral neuropathy)                                                                        | Kaufmann et al., 2006           |
|                                                                            | Congenital lactic acidosis                      | 43                     | Randomized, double-blinded,<br>placebo-controlled parallel<br>group | Reduced blood lactate levels post high<br>carbohydrate meal                                                                                       | Stacpoole et al., 2006          |
| Dimethylglycine                                                            | SLSJ-COX                                        | 5                      | Randomized, placebo-controlled<br>crossover                         | No effect                                                                                                                                         | Liet <i>et al.</i> , 2003       |
| Whey-based cysteine                                                        | PEO                                             | 13                     | Randomized, placebo-controlled,<br>double-blind crossover           | Glutathione levels increased. Advanced<br>oxidation protein products and<br>ferric-reducing antioxidant power<br>increased                        | Mancuso <i>et al.</i> , 2010    |
| Combination therapy<br>(creatine, α-lipoic acid<br>and CoQ <sub>10</sub> ) | CPEO, KSS, MELAS,<br>MNGIE, MM                  | 16                     | Randomized, placebo-controlled,<br>double-blind crossover           | Decreased plasma lactate, slower<br>disease progression (measured by<br>peak angle dorsiflexion strength).                                        | Rodriguez et al., 2007          |

CPEO, chronicprogressive external ophthalmoplegia; MERRF, myoclonic epilepsy, ragged red fibres; NIDT, non-ischaemic, isometric, dorsiflexion torque; SLSJ-COX, Saguenay-Lac-Saint-Jean COX deficiency.

Kanabus. Br J Pharmacol. 2014 Apr; 171(8): 1798–1817.

# Randomised, double-blinded, placebo-controlled clinical trials in mitochondrial disease

| Treatment                                                                  | Disease                                         | No. of participants | Type of trial                                                       | Outcome                                                                                                                                           | References                      |
|----------------------------------------------------------------------------|-------------------------------------------------|---------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| CoQ <sub>10</sub>                                                          | MELAS, PEO, complex I<br>deficiency, NARP, LHON | 30                  | Randomized, placebo-controlled,<br>double-blind crossover           | Serum CoQ <sub>10</sub> increased, lactate levels<br>decreased after 1 min of cycle<br>ergometry, but no significant change<br>in other endpoints | Glover et al., 2010             |
| Creatine                                                                   | MELAS and MM                                    | 7                   | Randomized, placebo-controlled,<br>double-blind crossover           | Increased handgrip strength, NIDT and<br>post-exercise lactate                                                                                    | Tarnopolsky et al., 1997        |
|                                                                            | CPEO and MM                                     | 16                  | Randomized, placebo-controlled,<br>double-blind crossover           | No effect                                                                                                                                         | Klopstock et al., 2000          |
|                                                                            | CPEO and KSS                                    | 15                  | Randomised, placebo-controlled<br>crossover                         | No effect                                                                                                                                         | Kornblum et al., 2005           |
| DCA                                                                        | MM, CPEO, KSS, Leigh<br>syndrome, MELAS         | 11                  | Randomised, placebo-controlled,<br>double-blind crossover           | Decreased blood lactate, pyruvate and<br>alanine at rest and post-exercise,<br>some improvements in brain MRS                                     | De Stefano <i>et al.</i> , 1995 |
|                                                                            | CPEO, MERRF, MM                                 | 8                   | Randomized, placebo-controlled,<br>double-blind crossover           | Decreased resting and exercise lactate<br>and pyruvate                                                                                            | Vissing et al., 2001            |
|                                                                            | Mitochondrial RC<br>disorders                   | 9                   | Randomized, placebo-controlled,<br>double-blind crossover           | Decreased blood lactate levels during<br>exercise                                                                                                 | Duncan et al., 2004             |
|                                                                            | MELAS m.3243A>G                                 | 30                  | Randomized, placebo-controlled<br>crossover                         | No effect. Study terminated due to side<br>effects (peripheral neuropathy)                                                                        | Kaufmann et al., 2006           |
|                                                                            | Congenital lactic acidosis                      | 43                  | Randomized, double-blinded,<br>placebo-controlled parallel<br>group | Reduced blood lactate levels post high<br>carbohydrate meal                                                                                       | Stacpoole et al., 2006          |
| Dimethylglycine                                                            | SLSJ-COX                                        | 5                   | Randomized, placebo-controlled<br>crossover                         | No effect                                                                                                                                         | Liet <i>et al.</i> , 2003       |
| Whey-based cysteine                                                        | PEO                                             | 13                  | Randomized, placebo-controlled,<br>double-blind crossover           | Glutathione levels increased. Advanced<br>oxidation protein products and<br>ferric-reducing antioxidant power<br>increased                        | Mancuso <i>et al.</i> , 2010    |
| Combination therapy<br>(creatine, α-lipoic acid<br>and CoQ <sub>10</sub> ) | CPEO, KSS, MELAS,<br>MNGIE, MM                  | 16                  | Randomized, placebo-controlled,<br>double-blind crossover           | Decreased plasma lactate, slower<br>disease progression (measured by<br>peak angle dorsiflexion strength).                                        | Rodriguez et al., 2007          |

CPEO, chronicprogressive external ophthalmoplegia; MERRF, myoclonic epilepsy, ragged red fibres; NIDT, non-ischaemic, isometric, dorsiflexion torque; SLSJ-COX, Saguenay-Lac-Saint-Jean COX deficiency.

Kanabus. Br J Pharmacol. 2014 Apr; 171(8): 1798–1817.

# Randomised, double-blinded, placebo-controlled clinical trials in mitochondrial disease

| Treatment                                                                 | Disease                                         | No. of<br>participants | Type of trial                                                       | Outcome                                                                                                                                           | References                      |
|---------------------------------------------------------------------------|-------------------------------------------------|------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| CoQ <sub>10</sub>                                                         | MELAS, PEO, complex I<br>deficiency, NARP, LHON | 30                     | Randomized, placebo-controlled,<br>double-blind crossover           | Serum CoQ <sub>10</sub> increased, lactate levels<br>decreased after 1 min of cycle<br>ergometry, but no significant change<br>in other endpoints | Glover et al., 2010             |
| Creatine                                                                  | MELAS and MM                                    | 7                      | Randomized, placebo-controlled,<br>double-blind crossover           | Increased handgrip strength, NIDT and<br>post-exercise lactate                                                                                    | Tarnopolsky et al., 1997        |
|                                                                           | CPEO and MM                                     | 16                     | Randomized, placebo-controlled,<br>double-blind crossover           | No effect                                                                                                                                         | Klopstock et al., 2000          |
|                                                                           | CPEO and KSS                                    | 15                     | Randomised, placebo-controlled<br>crossover                         | No effect                                                                                                                                         | Kornblum et al., 2005           |
| DCA                                                                       | MM, CPEO, KSS, Leigh<br>syndrome, MELAS         | 11                     | Randomised, placebo-controlled,<br>double-blind crossover           | Decreased blood lactate, pyruvate and<br>alanine at rest and post-exercise,<br>some improvements in brain MRS                                     | De Stefano <i>et al.</i> , 1995 |
|                                                                           | CPEO, MERRF, MM                                 | 8                      | Randomized, placebo-controlled,<br>double-blind crossover           | Decreased resting and exercise lactate<br>and pyruvate                                                                                            | Vissing et al., 2001            |
|                                                                           | Mitochondrial RC<br>disorders                   | 9                      | Randomized, placebo-controlled,<br>double-blind crossover           | Decreased blood lactate levels during<br>exercise                                                                                                 | Duncan et al., 2004             |
|                                                                           | MELAS m.3243A>G                                 | 30                     | Randomized, placebo-controlled<br>crossover                         | No effect. Study terminated due to side<br>effects (peripheral neuropathy)                                                                        | Kaufmann <i>et al.</i> , 2006   |
|                                                                           | Congenital lactic acidosis                      | 43                     | Randomized, double-blinded,<br>placebo-controlled parallel<br>group | Reduced blood lactate levels post high<br>carbohydrate meal                                                                                       | Stacpoole et al., 2006          |
| Dimethylglycine                                                           | SLSJ-COX                                        | 5                      | Randomized, placebo-controlled<br>crossover                         | No effect                                                                                                                                         | Liet <i>et al.</i> , 2003       |
| Whey-based cysteine                                                       | PEO                                             | 13                     | Randomized, placebo-controlled,<br>double-blind crossover           | Glutathione levels increased. Advanced<br>oxidation protein products and<br>ferric-reducing antioxidant power<br>increased                        | Mancuso <i>et al.</i> , 2010    |
| Combination therapy<br>(creatine, α-lipoic acid<br>and CoQ <sub>10)</sub> | CPEO, KSS, MELAS,<br>MNGIE, MM                  | 16                     | Randomized, placebo-controlled,<br>double-blind crossover           | Decreased plasma lactate, slower<br>disease progression (measured by<br>peak angle dorsiflexion strength).                                        | Rodriguez <i>et al.</i> , 2007  |

CPEO, chronicprogressive external ophthalmoplegia; MERRF, myoclonic epilepsy, ragged red fibres; NIDT, non-ischaemic, isometric, dorsiflexion torque; SLSJ-COX, Saguenay-Lac-Saint-Jean COX deficiency.

Kanabus. Br J Pharmacol. 2014 Apr; 171(8): 1798–1817.

#### Reactive oxygen species and their detoxification



# Mitochondrial diseases with specific treatment options

| Affected pathway                                                   | Clinical syndrome                                            | Affected gene(s)                                               | Clinical phenotype                                                                                | Therapeutic substance                                                                                                  | Treatment response                                                                      |
|--------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Primary disorders of<br>mitochondrial                              | Brown-Vialetto-Van Laere syn-<br>drome / Fazio-Londe disease | SLC52A2, SLC52A3,<br>(SLC52A1) <sup>a</sup>                    | Sensorineural hearing loss, cra-<br>nial nerve palsies                                            | Riboflavin (oral: 10–50 mg/kg/<br>day) <sup>b</sup>                                                                    | Generally good                                                                          |
| vitamin cofactor<br>metabolism                                     | Biotin-thiamine-responsive basal ganglia disease             | SLC19A3                                                        | Episodic encephalopathy, dys-<br>tonia, seizures                                                  | Thiamine (oral: 10–20 mg/kg/<br>day), biotin (oral:<br>10–15 mg/kg/day) <sup>c</sup>                                   | Generally good                                                                          |
|                                                                    | Biotinidase deficiency                                       | BTD                                                            | Dermatitis, muscular hypotonia,<br>developmental regression                                       | Biotin (oral: 5–10 mg/kg/day) <sup>d</sup>                                                                             | Generally good                                                                          |
|                                                                    | Holocarboxylase synthetase<br>deficiency                     | HLCS                                                           | Skin lesions, metabolic acidosis,<br>seizures, developmental delay                                | Biotin (oral: 10-20 mg/kg/<br>day) <sup>e</sup>                                                                        | Variable but generally<br>good                                                          |
|                                                                    | Thiamine pyrophosphokinase<br>deficiency                     | ΤΡΚΙ                                                           | Episodic encephalopathy, dys-<br>tonia, spasticity                                                | Thiamine (oral: ~20 mg/kg/<br>day) <sup>f</sup>                                                                        | Variable (<10 patients<br>treated so far)                                               |
| Disorders with indirect                                            | ACAD9 deficiency                                             | ACAD9                                                          | Encephalopathy, myopathy,                                                                         | Riboflavin (oral: 10–20 mg/kg/                                                                                         | Variable                                                                                |
| chondrial vitamin<br>cofactor<br>supplementation                   | Multiple acyl-CoA<br>dehydrogenase deficiency                | ETFA, ETFB, ETFDH,<br>SLC25A32, FLAD I                         | Early childhood multisystem dis-<br>ease or late-onset form with<br>muscle weakness, hepatopathy, | Riboflavin (oral: ~10 mg/kg/<br>day) <sup>h</sup>                                                                      | Generally good                                                                          |
|                                                                    | Thiamine-responsive pyruvate<br>dehydrogenase deficiency     | PDHAI                                                          | ecc.<br>Neonatal lactic acidosis, seizures,<br>developmental regression,<br>spasticity            | Thiamine (oral: 30–40 mg/kg/<br>day) <sup>i</sup>                                                                      | Variable                                                                                |
| Disorders of mitochon-<br>drial non-vitamin<br>cofactor metabolism | Coenzyme $Q_{10}$ deficiency                                 | PDSS1, PDSS2, COQ2,<br>COQ4, COQ6, COQ7,<br>ADCK3, ADCK4, COQ9 | Variable phenotypes, ranging<br>from adult-onset myopathy to<br>fatal neonatal presentations      | Coenzyme Q <sub>10</sub> (oral:<br>10–30 mg/kg/day) <sup>i</sup>                                                       | Highly variable depend-<br>ing on the underlying<br>defect                              |
| Disorders of mitochon-<br>drial inorganic<br>cofactor metabolism   | Cytochrome c oxidase<br>deficiency                           | SCO2, COA6                                                     | Infantile<br>encephalocardiomyopathy                                                              | Copper-histidine (dose un-<br>dear; subcutaneous injec-<br>tions of up to 500 µg daily<br>were suggested) <sup>k</sup> | Unclear, only one<br>SCO2 patient treated;<br>only <i>in vitro</i> evidence<br>for COA6 |
|                                                                    | Molybdenum cofactor deficiency                               | MOCS1, MOCS2, GPHN                                             | Infantile-onset epileptic enceph-<br>alopathy, progressive brain<br>damage                        | Cyclic pyranopterin mono-<br>phosphate (intravenous:<br>80–320 µg/kg/day) <sup>1</sup>                                 | Generally good in<br>MoCD type A<br>patients                                            |
| 'Inhibitors' of<br>mitochondrial                                   | 3-Hydroxyisobutyryl-CoA<br>hydrolase deficiency              | HIBCH                                                          | Infantile Leigh-like phenotype                                                                    | Valine-restricted diet <sup>m</sup>                                                                                    | Unclear, only few pa-<br>tients treated                                                 |
| metabolism                                                         | Enoyl-CoA hydratase deficiency                               | ECHS I                                                         | Infantile Leigh-like phenotype                                                                    | Valine-restricted diet <sup>n</sup>                                                                                    | Unclear, only few pa-<br>tients treated so far                                          |
|                                                                    | Thioredoxin 2 deficiency                                     | TXN2                                                           | Cerebellar atrophy, dystonia,<br>seizures, peripheral neuropathy                                  | Antioxidant treatment (e.g.<br>Idebenone up to 20 mg/kg/<br>day)°                                                      | Apparently good (only<br>one patient reported)                                          |
|                                                                    | Ethylmalonic encephalopathy                                  | ETHEI                                                          | Severe, multisystem infantile<br>disorder                                                         | Metronidazole, N-acetyl cyst-<br>eine as glutathione precur-<br>sor, liver transplantation <sup>p</sup>                | Variable                                                                                |

# Mitochondrial diseases with specific treatment options



Brain. 2017 Feb;140(Pt 2):e11.

## Exercise and diet

## Exercise

- Important for general fitness : exercises muscles and keeps heart and circulation healthy
- If you become unfit can adversely affect muscles
- In many patients' muscles there is a mixture of good and bad mitochondria; the hope is that exercise can increase the good mitochondria, boosting the level of ATP so avoiding symptoms
- This remains a theory and there are large trials looking at this idea
- Current advice is to exercise regularly at a level that is comfortable, but without pushing yourself to the point that the muscles become painful

# Dietary modification

- Ketogenic (high fat / low carbohydrate) diet: promotes formation of ketone bodies (via FAO)
- Ketone bodies:
  - Alternative energy source for brain, heart and muscle
  - Associated with <sup>↑</sup>OXPHOS gene expression (akin to starvation)
  - Possibly stimulate mitochondrial biogenesis
- No randomized, double-blinded trial data
- PDH deficiency
- Seizures
- Dietetic supervision!

### Health surveillance and monitoring

### **Clinical variability**



#### Surveillance enables early treatment



#### Guidelines - http://mitochondrialdisease.nhs.uk



**Rare Mitochondrial Disorders Service** 

 HOME
 PATIENT AREA
 MITOCHONDRIAL SERVICES
 PROFESSIONAL AREA
 RESEARCH
 EVENTS
 SPONSOR

 CARE GUIDELINES
 Home / Professional Area / Care Guidelines

#### Mitochondrial Diseases are an important group of inherited disorders that result in a defective mitochondrial respiratory chain.

Together they form an important group of inherited disorders, yet management of these conditions remains a poorly researched area and there is little expert advice available for the treatment of specific aspects of Mitochondrial Disease. Multi system involvement is also common and this can pose additional management dilemmas for doctors.

The Newcastle Mitochondrial Disease Guidelines aim to provide expert guidance to health professionals on the management of specific aspects of Mitochondrial Disease.

These guidelines have been developed using consensus expert opinion sourced from the NHS Rare Mitochondrial Disorders Service in Newcastle with associated experts from other hospitals.

Anaesthesia & Peri-Operative Guidelines

Cardiology Guidelines Diabetes Guidelines Epilepsy Guidelines

Gastrointestinal Guidelines

Neuropathy Guidelines

Ophthalmology Guidelines

Pregnancy Guidelines

**Respiratory Guidelines** 

Stroke Like Episode Guidelines

#### Latest news

Disclaimer

Mitochondrial Patient Information Day, London

Saturday 7th October 2017

#### For patients and professionals...

### Emergency plans and acute management

### **Emergency plan**



#### University College London Hospitals MHS

The National |

The National Hospital for Neurology and Neurosurgery Queen Square London WC1N 3BG Our Ref: NHS No:

Clinic: Date:

#### MEDICAL IN CONFIDENCE

Emergency and anaesthetic plan

Patient details:

Next of kin details:

Diagnosis: Mitochondrial disease, m.3243A>G mutation

Problems: bilateral hearing loss

Medication: Co Enzyme Q10 200mg BD

#### Contact details for the mitochondrial team:

Consultants:Professor M. G Hanna, Consultant Neurologist, Dr<br/>Quinlivan, Consultant in Neuromuscular DisordersContact via Marcia Forde PA to Professor Hanna on 0203 448 8014 or<br/>at Marcia.forde@uclh.nhs.ukClinical Nurse Specialist:Direct line 0203 448 8009Specialist Registrar for the muscle team via the hospital switchboard on<br/>0845 155 5000, bleep 8211 (during working hours 08.30 – 18.00)For out of hours advice please contact the on-call registrar for the<br/>National Hospital for Neurology via the UCLH switchboard on 0845 155

NHS Foundation Trust MUSCLE SERVICE Professor N G Hanna ND FRCP Professor N G Hanna ND FRCP Professor A H V Schapira ND FRCP Dr Mathew Parton FRCP PhD Dr Chris Turner FRCP PhD Tel: 0845 155 5000 Dr Ros Guinlikan FROPH FROP MD Dr Emma Matthews MRCP PhD Fax: 020 3448 3633 Dr Parlos Macharlo MRCP PhD www.uclh.nhs.uk Dr Jauper Mortew MRCP PhD Clinical Nurse Specialists www.cnmd.ac.uk Natalio James Fat 88023 Email: natal e james@uolhunhs.uk Louise Speigel Ext 88015 Email: louise.spoigal@uditunhs.uk Suzanne Booth Ext 88582 Email: Suzanne honih/Rusih ohs uk PA to Professor Hanna Marcia Forde Ed. 88014 Secretary to Dr Parton Hannah Samsonraj Est: 88251 Secretary to Dr Turner Janice Reveira Ext: 88005 NCG Manager Jackie Kasozi-Balende Ext. 88030 NCG Secretary Sally-Ann DeSouza Ext. 88155 NCG McArdle Manager Helena Coskenan Ext. 88132 PERIPHERAL NERVE SERVICE Consultants Professor Mary M Railly MD FRCP FRCPI Dr Hadi Manji MA MD FRCP Dr Michael Lunn MA MRCP PhD Dr Matilde Laura MD PhD Dr Aising Carr MRCP Neurol. PhD Clinical Nurse Specialist Mo. Karen Bull Est. 88008 Email: karen bull@udh.nhsuk PA to Professor Relly Monica McKee-Vincent Ext. 88457 Secretary to Dr Manji/Dr Laura Sharron Wright Ext: 88035 Acting Secretary to Dr Lunn Julie McPherson Ext. 88121 Secretary to Karen Bull/Prof Reilly Michele Boyel Ext: 88035 Junior Medical Secretary Bina Kanai NEUROMUSCULAR COMPLEX CARE CENTRE Dr Fionnuala Crummy MD, FRG Dr Javid Khan FRCA, FFICM Dr Jeremy Raddiffe Neuropsychologist Dr Jatin Pathi **Clinical Nurse Specialist** Emma Lewis Extn 83228 Secretary Feral Suleyman Edn 83424 MYASTHEMIA AND NOTOR NEURONE DISEASE SERVICE Consultants Dr Robio S Howard PhO FRCP Professor Dimitri Kullmann MA DPhil FRCP FreedSol Dr Richard Orrall BSe MD FRCP Dr Katle Sidle PhD MBBS MRC8

In cost own between the second second

Clinical Nurse Specialists Mo. Jan Clarke Est. 83517

## Acute management

- Education and early recognition of warning signs:
  - Nausea and vomiting
  - Confusion, sleepiness or irritability
  - Weakness, numbness or speech problems
  - Visual or hearing disturbance
  - Seizures
  - Severe headaches
  - Sudden bowel problems

## Acute management

- Seek medical attention early (GP or A&E)
- Ensure any infection treated and well hydrated
- Review medications
- Admit to hospital for:
  - Seizure control
  - Intravenous fluids (dextrose)
  - Intravenous antibiotics
  - Correction of acidosis

## Summary

- Lots of exciting treatments in pipeline but let's not forget there's lots we can do now!
- No clear evidence from trials for current pharmacological agents, vitamins and cofactors – apart from specific scenarios
- Surveillance and treatment of complications and recognition of warning signs crucial



# Thank you

